

Norm: UNI EN 1676 e 1706

Numeric designation: EN AB and AC - 21100 Symbolic designation: EN AB and AC - AlCu4Ti

CHEMICAL COMPOSITION %

ALLOY DESIGNATION		ELEMENTS											
		Fe	Cu	Mn	Mg	Cr	Ni	Zn	Pb	Sn	Ti	Other each	Other total
Min	0	0	4,2	0	0	0	0	0	0	0	0,15	0	0
Max	0,15	0,15	5,2	0,55	0,03	0,03	0,03	0,07	0,03	0,03	0,25	0,03	0,10
Min	0	0	4,2	0	0	0	0	0	0	0	0,15	0	0
Max	0,18	0,19	5,2	0,55	0,03	0,03	0,03	0,07	0,03	0,03	0,30	0,03	0,10
	Min Max Min	Si Min 0 Max 0,15 Min 0	Si Fe Min 0 0 Max 0,15 0,15 Min 0 0	Si Fe Cu Min 0 0 4,2 Max 0,15 0,15 5,2 Min 0 0 4,2	Si Fe Cu Mn Min 0 0 4,2 0 Max 0,15 0,15 5,2 0,55 Min 0 0 4,2 0	Si Fe Cu Mn Mg Min 0 0 4,2 0 0 Max 0,15 0,15 5,2 0,55 0,03 Min 0 0 4,2 0 0	Si Fe Cu Mn Mg Cr Min 0 0 4,2 0 0 0 Max 0,15 0,15 5,2 0,55 0,03 0,03 Min 0 0 4,2 0 0 0	Ni	Name	Ni	Ni	Ni	Ni

MECHANICAL PROPERTIES

(Mechanical properties obtained from samples cast separately at +20°C room temperature)

		Rm	Rp02	A	НВ	R Fatigue*	
CASTING PROCESS (condition)	TEMPER	Tensile strength	Yield strength	Elongation	Brinell hardness		
	DESIGNATION	EN 1706:2020	EN 1706:2020	EN 1706:2020	EN 1706:2020	EN 1706:2020	
		MPa	MPa	%	нвш	MPa	
SAND	Т6	300	200	3	95	80 - 110	
SAND	T64	280	180	5	85	80 - 110	
PERMANENT MOULD	Т6	330	220	7	95	80 - 110	
PERMANENT MOULD	T64	320	180	8	90	80 - 110	

*Values for tests under rotating bending conditions up to 107 cycles (Wöhler curve)

PHYSICAL PROPERTIES

(The following properties are spoilt by the variation of the chemical composition, by its metallurgic structure, casting integrity and casting conditions, therefore these values are approximate)

SPECIFIC WEIGHT	2,79 Kg/dm³			
SPECIFIC HEAT (at 100 °C)	0,91 J/gK			
ELASTIC MODULUS	72 GPa			

ELECTRICAL CONDUCTIVITY	EN 1706:2020	16 - 23 MS/m		
THERMAL CONDUCTIVITY	EN 1706:2020	120 - 150 W/(m K)		
LINEAR THERMAL EXPANSION (20 °C - 100 °C)	EN 1706:2020	23·10 ⁻⁶ /K		

Norm: UNI EN 1676 e 1706

Numeric designation: EN AB and AC - 21100

Symbolic designation: EN AB and AC - AICu4Ti

TECHNOLOGICAL FEATURES

(Quality indications excerpted from the norm EN 1706:2020)

CASTABILITY	С	DECORATIVE ANODIZING	С
REASISTANCE TO HOT TEARING	D	ABILITY TO BE WELDED	D
PRESSURE TIGHTNESS	D	ABILITY TO BE POLISHED	В
MACHINABILITY (after cast)	-	STRENGHT AT ROOM TEMPERATURE	А
MACHINABILITY (after heat treatement)	А	STRENGHT AT ELEVATED TEMPERATURE (200°C)	В
RESISTANCE TO CORROSION	D	DUCTILITY	А

A: EXCELLENT, B: GOOD, C: FAIR, D: POOR, E: NOT RECOMMENDED, F: UNSUITABLE

GUIDELINES FOR USE

The ingot re-melting process must be carried out as fast as possible and overheating must be avoided (maximum melting temperature 750°C). Iron tools that may be touched by the liquid metal must be specially painted to avoid spoiling the alloy. The best alloy purification results are achieved by treating the alloy with inert gases such as nitrogen and/or argon to remove dissolved hydrogen and any oxides in the liquid bath. Careful skimming of the bath is recommended. It is allowed to recycle sprues and casting appendages up to 40% out of the total charge weight.

Heat Treatment - The possible treatments and the properties to be potentially achieved are listed in the table "MECHANICAL PROPERTIES".

FURTHER FEATURES OF THE ALLOY

Resistance to weathering and seawater - Limited resistance to weathering and corrosion in general; it is not suitable for applications directly touched by seawater.

USUAL APPLICATIONS

This alloy is suitable for highly stressed castings; without special corrosion resistance requirements, such as aircraft and transport construction; high-voltage switchgear; textile machinery; armament industry.

This alloy **does not comply** with Standard **EN 601**.

DISCLAIMER

The contents of the sheet are for information purposes only, they do not assure the mentioned properties. The user is held responsible for decisions based on such information and they are not exonerated from verification. Should this not be carried out, Raffmetal S.p.A. assumes no liability.